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a b s t r a c t

The influence that atmospheric conditions might have on the efficiency of the spread of influenza virus
is important for epidemiological and evolutionary research. However, it has not been satisfactorily rec-
ognized and quantified so far. Here we provide a statistical model of influenza transmission between
individuals. It has been derived from the results of recent experiments, which involved infecting guinea
pigs with influenza at various temperatures and relative air humidity levels. The wide range of transmis-
sion rates in those experiments reflects the ensemble-independent phenomena. The correlation between
Influenza
Influenza epidemiology
Influenza infectivity
I

most of our simulations and the experimental results is satisfactory. For several different conditions, we
obtained transmissibility values which seem to be sufficiently accurate to provide partial input for an
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. Introduction

Among the viruses that are spread efficiently by air, the influenza
virus causes one of the highest worldwide morbidity and mor-

ality rates. However, there are still some factors related to its
pread that have not been thoroughly examined and understood.
n particular, the influence of weather conditions, such as air tem-
erature and relative humidity, on the between-host transmission
f this virus is not understood clearly. Thus far, the underlying rea-
ons for its predominantly wintertime spread, significant for the
nderstanding of influenza epidemiology and evolution, are still
nexplained. Nonetheless, the seasonality of influenza epidemics is
ell characterized—in temperate regions influenza epidemics recur
ith marked regularity: in the northern hemisphere the influenza

eason spans November to March, while in the southern hemi-
phere epidemics last from May until September. Many theories
ave been proposed to explain this seasonal variation (Lofgren et
l., 2007).

Recently, some results have provided direct experimental evi-
ence of the major role of weather conditions in the dynamics
f influenza transmission. Lowen et al. (2007), using the guinea
ig as a model host, have shown that the efficiency of airborne
nfluenza spreading depends upon both ambient relative humidity
nd temperature, and that both cold and dry conditions strongly
avor transmission. Aerosol-related phenomena are most likely the

ajor contributing factors here. Some studies of the possible effect
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they might have on virus spread have been carried out, although
they are neither numerous nor conclusive. Wang et al. (2007) stud-
ied the case of SARS; Tellier (2006) reported on influenza A aerosol
spread. Lai and Cheng (2007) modeled expiratory droplets disper-
sion transport using Eulerian approach. Quantification of the routes
of influenza transmission was attempted by Atkinson and Wein
(2008).

Here we present an heuristic model of influenza transmission,
which includes some environmental parameters. It is based on the
experimental results of Lowen et al. (2007), involving guinea pigs.

2. Experimental Results

The underlying guinea pig experiments were conducted using
eight animals per trial: four infected and four healthy but suscepti-
ble to infection. Individual pigs were placed together in a chamber
and arranged pairwise on four shelves such that each shelf con-
tained one healthy and one infected individual. Thus there were two
vertical columns—one consisting of the healthy and the other, of the
infected guinea pigs. The air flowed horizontally from the infected
towards the healthy animals to maximize the infection rate. In order
to control infectivity, the virus concentration in nasal wash of each
guinea pig was measured every 2 days. The goal was to discover
how many susceptible animals would become infected, and after
how many days, under controlled air temperature and humidity
conditions.
The experiments were performed at five different relative
humidity values (20%, 35%, 50%, 65%, and 80%) and three differ-
ent temperatures (30 ◦C, 20 ◦C, and 5 ◦C). At 30 ◦C no infections
occurred. For both 20 ◦C and 5 ◦C, low relative humidity of 20–35%
was most favorable, leading to nearly 100% transmission. At 20 ◦C
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Fig. 1. The two piecewise linear approximations of the infection course. For 20 ◦C
T. Żuk et al. / Computational Biol

he transmission rapidly fell at 50% humidity, rose again to quite
igh levels at 65%, and was completely blocked at 80%. Such behav-

or probably reflects the virus stability in aerosols. At 5 ◦C the
ransmission was still very efficient at 50% humidity but dropped
o 0.5 for higher humidity values. For infected animals housed at
◦C, the duration of peak shedding was approximately 40 h longer

han that of animals housed at 20 ◦C. This increased shedding prob-
bly accounts for the generally enhanced transmission seen at
◦C.

. Methodology

.1. Model’s Assumptions

We have formulated a discrete stochastic model based on the
robability of infection. To estimate this probability, we apply a
imple generalized linear model (GLM), with f (p) = ln(1 − p) as the
ink function. This is a standard approach that has been success-
ully adopted in various related contexts for modeling influenza
Ferguson et al., 2005; Stegeman et al., 2004). The model starts from
ay 0, when all non pre-infected animals are healthy. For each con-
ecutive day, we calculate the probabilities that each individual,
mong those not yet infected, will be infected on that day, and then
e randomly check whether any of the possible infections actually
appens. The infection history is subsequently updated, and the
lgorithm moves to the next day.

We assume the four following conditions:

1. The probability that the ith individual will be infected on a par-
ticular day1 is

pi = 1 − exp

⎛
⎝−�(T, H)

∑
j

˛ijˇj

⎞
⎠ (1)

where ˇj is a measure of virus concentration in the respiratory
tract of the jth individual (decimal logarithm of the number of
PFU in one milliliter of its nasal wash). The summation goes over
individuals placed on the same and on adjacent shelves. Spatial
coefficients ˛ij are related to the probabilities that an aerosol
drop, shed by the jth animal, will get to the ith guinea pig’s cage.
The coefficient �(T, H) reflects the dependence of the virus trans-
mission rate on the air temperature (T) and relative humidity
(H).

. The course of influenza (virus concentration in nasal wash on the
days subsequent to infection) depends only on the ambient tem-
perature. Therefore, for each individual that became infected via
air during the course of each particular experiment, the concen-
trations were assigned values reflecting the average case for that
temperature. Table 1 shows the mean concentrations measured
on particular days after infection, separately for each temper-
ature. Functions comprising two linear pieces appear to be a
reasonable guess, as shown in Fig. 1. This may be interpreted
as a two-phase infection course: first, the virus concentration
grows exponentially (the scale is logarithmic), and subsequently
(mostly as a result of the immune system activation) it expo-
nentially falls. The transition between phases 1 and 2 is always
sharp.

. A detectable virus presence in the respiratory tract begins 2 days

after the infection. Such an assumption is drawn from the fact
that the virus was not detectable in nasal wash earlier than the
third day of experiment. A lack of infections during the first day,
when the virus concentrations in pre-infected individuals is sup-

1 Provided that it had not been infected previously.
the best fit is ˇ(t) = 2.23t − 0.61 for the growing part and −1.63t + 13.62 for the
falling; for 5 ◦C it is 2.03t − 0.01 and −1.27t + 12.13 respectively. We assume ˇ = 0
if the amount of virus is undetectable or zero.

posed to be high, is of little probability. This is consistent with
the major biological and clinical experience, which shows that
the influenza proper begins rapidly after 2–3 days of a rather
asymptomatic and non-infectious incubation period (Carrat et
al., 2008; Collier and Oxford, 1993). Accordingly, we shifted the
assumed average infection course such that ˇ = 0 on the first
day. The final concentration values are shown in Table 2.

4. The infection course in pre-infected individuals also consists of
two linear (on a logarithmic scale) phases. Concentration values
for the descending phase come from the measurement2(Lowen
et al., 2007). Due to the lack of the respective experimental data,
for the ascending phase we assumed the slope to be the same
as for animals infected via air. The virus concentration values for
those individuals are also shown in Table 2.

3.2. Propagation of Infection

Assuming values for ˇ(t), ˛ij , and � , it is possible to compute the
probability of each particular healthy individual becoming infected
on the first day of the experiment (Eq. (1)). And from the proba-
bilities determined for days 1 to t, we can calculate the value for

day t + 1 for each guinea pig in the following manner: for each
sequence of days � = (�1, . . . , �n), where �k ∈ {0, 1, . . . , t}, and n = 4
is the number of individuals to infect, let us take:

2 We fitted a linear function for these values. However, they were originally of a
nearly linear nature.
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Table 1
The average virus concentration in nasal wash of individual guinea pigs infected via air.

Day

1 2 3 4 5 6 7 8 9

Concentration, T = 20 ◦C 1.52 4.52 5.63 6.89 6.06 3.26 1.88 – –
Std. deviation square 0.15 0.48 0.63 0.37 0.67 1.92 2.72 – –
C 7.0
S 0.3
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oncentration, T = 5 ◦C 1.91 4.40 5.72
td. deviation square 0.40 0.59 1.26

or each individual, day 1 is the day when a measurable virus quantity first appeare

(a) the probability p� that, for each j from 1 to n, the jth individual
became infected on day �j (or has not yet been infected if �j = 0)
and

b) the sum S� that occurs in the exponent in Eq. (1) if (a) is the
case.

The probability pi(t + 1) that the ith individual will become
nfected on day t + 1 may then be considered as the expected value
f a random variable which takes values

� = Pi(t)(1 − e−�S� )

ith probabilities p� . Hence it equals

i(t + 1) = Pi(t)

(
1 −
∑

�

p� e−�S�

)
. (2)

i(t) is the probability that the ith individual has not been infected
reviously, i.e., up to day t (if it has, infection cannot happen any-
ore). Of course,

i(t + 1) = (1 − pi(t + 1))Pi(t).

he above procedure establishes an iterative method for finding
he infection probabilities on each consecutive day. The results are
onsistent with what was obtained from a number of Monte Carlo
imulations, run with the same parameter values.

The coefficients ˛ij indicate the fraction of the virus shed by the
ndividual j that contributes to infecting the individual i. We assume
he following:

a) ˛ij = 1 − 2˛1 if the individual j is located on the same shelf, in
the adjacent column;

b) ˛ij = ˛1 if it is located on an adjacent shelf, in the adjacent
column;

c) ˛ij = ˛2 if it is located on an adjacent shelf, in the same column
(so it is not pre-infected).

This is due to the fact that the virus particles shed by a partic-

lar animal from the pre-infected column will move mainly to the
ther cage located on the same shelf. However, a certain fraction of
hem, ˛1, may diffuse to each of the two adjacent shelves (or out of
he system if the source shelf is at the edge). In addition, a certain
raction ˛2 of the virus shed by individuals infected via air may also

able 2
he assumed virus concentration values for the guinea pigs infected via air (A) and pre-in

Day

1 2 3 4 5

20 ◦C 0.00 1.62 3.85 6.08 7.08
5 ◦C 0.00 2.02 4.05 6.08 7.06

20 ◦C 5.07 7.30 6.70 5.42 4.14
5 ◦C 4.97 7.00 8.54 7.32 6.10

or the latter we took ˇ(t) = −1.28t + 10.52 at 20 ◦C and −1.23t + 12.22 at 5 ◦C for the de
2 6.01 4.54 3.52 1.77 –
2 2.38 1.44 3.18 2.34 –

s respiratory tract.

cross the shelf border and reach a neighboring animal in the same
column. It seems reasonable to expect that ˛2 < ˛1.

We have already assumed that the virus concentration is always
the same for all pre-infected individuals. The part of S� that comes
from them is then equal to this concentration (multiplied by 1 − ˛1
if the respective individual is located on the very top or bottom
shelf).

3.3. An Infection Space

The coefficients ˛1, ˛2, and �(T, H) must be determined experi-
mentally. In order to do so, we introduce a three-dimensional vector
space V. The result of a particular experiment will be represented by
a vector v = [x, t, �] ∈ V . The coordinates of this vector, in a certain
base, have the following meaning:

x = the ratio of the individuals that were infected via air during the
whole experiment to all the previously healthy individuals.
t = the average time (number of days) elapsed before infection
onset.
� = standard deviation for the distribution of infection onset days.

We define a metric tensor on V as

g =
[

10 0 0
0 5 0
0 0 2

]
.

Thus, we are able to compute an abstract distance between two
post-experimental states v1, v2 by simply taking the square root of
the scalar product of v1 − v2 with itself:

d(v1, v2):=
√

10(x1 − x2)2 + 5(t1 − t2)2 + 2(�1 − �2)2. (3)

This will allow comparison of the results of different experiments
and simulations quantitatively. The diagonal terms of g have been
chosen according to the range of variety of appropriate coordinates.
We have set a large coefficient (equal to 10) for the total infection
rate x as it is a value between 0 and 1, and differs only slightly. On the
other hand, the standard deviation of infection day, �, is taken with

a small coefficient (equal to 2) because it may differ considerably,
even for simulations performed with similar parameter values. Note
that this choice, although it seems reasonable, is arbitrary. Using
another distance definition, it is possible to obtain quite different
results.

fected (P).

6 7 8 9 10

5.45 3.82 2.18 0.55 0.00
5.79 4.52 3.25 1.98 0.72

2.87 1.60 0.32 0.00 0.00
4.87 3.64 2.42 1.20 0.00

scending phase.
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Table 3
Abstract distances between the experimental data points.

20% 35% 50% 65% 80%

20% – 1.20 3.75 1.39 ×
35% × – 3.82 1.23 ×
50% × 1.88 – 2.60 ×
65% × 2.61 1.21 – ×
80% × 4.15 2.33 1.77 –
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Fig. 2. Classification of the parameter sets for (a) 20 ◦C and (b) 5 ◦C. For both temper-

eter sets with high � values have been classified to this humidity
level conditions.

For 5 ◦C the least distances (with all experimental points
he values in the right-upper corner correspond to temperature 20 ◦C, and in the
eft-lower corner, to 5 ◦C. We have taken the average V-coordinate values wherever
here were two experiments performed under the same conditions.

Distances between points representing the experiments of
owen et al. (2007) are collected in Table 3.

.4. Extraction of Unknown Parameters

Using the few experimental points in V, it is necessary to deter-
ine the unknown parameters ˛1, ˛2, and �(T, H). This is done by

sing the iterative algorithm described in Section 3.2 to generate
number of points corresponding to various reasonable parame-

er sets. Each of these sets will then be classified, separately for
ach temperature, as an approximation of parameter values for
ne particular humidity level H corresponding to the available
xperimental data, namely, the one that is represented by the exper-
mental point of least distance to the point considered. After that, a
earch is performed for the most relevant values of ˛1 and ˛2, that
over the maximal number of experimental cases for both tempera-
ures and with the smallest possible distances. The last step involves
etermination of � values for each T and H separately.

For the simulations here we set 17 irregularly spaced check-
oints for ˛1 and ˛2 from 0 to 0.5, and 62 checkpoints for � from
.001 to 0.5. They are distributed more densely for lower parameter
alues.

. Results and Discussion

The obtained classification of experimental points in the param-
ter space is shown graphically in Fig. 2. The most striking feature
s that neither of the parameter sets has been classified to 35%
umidity3 for 20 ◦C. Also the points belonging to 20% humidity lie
nly in a quite narrow range of high, and rather unexpected, ˛2
alues. We consider the occurrence of late infections in the cor-
esponding experiments, together with the lack of infections on
ntermediate days, to be a possible cause of this behavior. Indeed,
n our model such a situation is most similar to the distributions
rovided by surprisingly high values of ˛2. But this could never
e typical because the infection probability (Eq. (2)) is always a
ecreasing function of time, at least from the 3rd day. However,
uring Monte Carlo simulations, it is possible sometimes to obtain
esults that display this feature, even for quite reasonable parame-
ers. Due to the experimental data set limitations, involving a rather
mall number of animals, it is not easy to determine whether those
ate infections are simply fluctuations, or rather a symptom of a cer-
ain phenomenon the model does not yet take into consideration.

Another striking feature of the classification for 20 ◦C is the
act that the 50% humidity area is placed uppermost, above the
reas representing 20% and 65% humidity. This is not consistent

ith the above-mentioned pattern of transmission dependency on

elative humidity that was observed in the experimental results.
ndeed, there was a local minimum of transmission observed at
his humidity value, and therefore we would rather expect � val-

3 The lack of 80% points for 20 ◦C is due to lack of the corresponding virus trans-
ission, and of 20% points for 5 ◦C, of an appropriate data, respectively.
atures, each humidity value sets a single compact area in the parameter space. The
curved surfaces are boundaries between those areas; the respective humidity values
are indicated by the color of the appropriate region of the vertical slice surface. The
dark surface on (a) is drawn between the 20% and 65% areas.

ues in corresponding parameter sets to be smaller, not larger than
the rest. This divergence is probably due to the extreme limitation
of available data—as the virus transmission under these conditions
was at a low level, only two infection cases occurred. This resulted
in a very small, unrealistic standard deviation for the distribution of
infection days. Thus, the distance (Eq. (3)) between the simulation
results for parameters expected to be relevant and the correspond-
ing experimental result was much greater than it should be and
exceeded the distance to the closest improper condition set. On the
other hand, a small � value corresponds to the situation that occurs
in the model when � is very high—nearly all pigs become infected
on the 1st day. This might be a possible explanation why the param-
included) appear for the four sets of ˛1 and ˛2 values shown in

Table 4
The four ˛1 and ˛2 value sets for which minimal distances at 5 ◦C appear, with all
humidity values being represented.

˛1 0.35 0.40 0.45 0.50
˛2 0.00 0.00 0.02 0.02
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sures. J. Infect. Dis. 190.

Tellier, R., 2006. Review of aerosol transmission of influenza A virus. Emerg. Infect.
ig. 3. Gamma vs. humidity for 5 ◦C and (˛1, ˛2) equal (0.35, 0) and (0.45, 0.2),
espectively. Only the points for which the distance is not greater than 0.8 are
hown.
able 4. Possible values of � for particular humidity levels at this
emperature, provided those values of alphas, are shown in Fig. 3.
hey seem to be consistent with the experimental results from
Lowen et al., 2007).
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For 20 ◦C the minimal distances (of about 0.2) to the 65% humid-
ity experimental result occur, with the above alphas, for � values
0.04–0.045. This is the only conclusion that appears reasonable
since the experimental data for other humidity values are proba-
bly distorted by statistical fluctuations, arising from the insufficient
number of cases. The V-space distances between any point clas-
sified to 20% or 50% humidity and the appropriate experimental
result are greater than most of the distances between particular
experimental results, indicating that the classification for this tem-
perature is not satisfactory. Due to the sparseness of experimental
data, it would be interesting to search for another metric that does
not rely on the distribution of the days on which infection occurred.
Or, possibly, to calibrate our simulation model with a significantly
larger experimental data set. Nevertheless, we consider the corre-
lation between experimental and simulation results to be sufficient
for the purpose of using transmissibility values obtained from this
simple model as one of the inputs for intended large-scale epidemi-
ological studies in the near future.
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